z-logo
Premium
Valence energy correction for electron reactive force field
Author(s) -
Bertolini Samuel,
Jacob Timo
Publication year - 2022
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.26844
Subject(s) - reaxff , electron , atomic physics , semiclassical physics , valence electron , chemistry , dissociation (chemistry) , potential energy , molecule , force field (fiction) , chemical physics , molecular physics , physics , hydrogen bond , quantum mechanics , organic chemistry , quantum
Reactive force fields (ReaxFF) are a classical method to describe material properties based on a bond‐order formalism, that allows bond dissociation and consequently investigations of reactive systems. Semiclassical treatment of electrons was introduced within ReaxFF simulations, better known as electron reactive force fields (eReaxFF), to explicitly treat electrons as spherical Gaussian waves. In the original version of eReaxFF, the electrons and electron–holes can lead to changes in both the bond energy and the Coulomb energy of the system. In the present study, the method was modified to allow an electron to modify the valence energy, therefore, permitting that the electron's presence modifies the three‐body interactions, affecting the angle among three atoms. When a reaction path involving electron transfer is more sensitive to the geometric configuration of the molecules, corrections in the angular structure in the presence of electrons become more relevant; in this case, bond dissociation may not be enough to describe a reaction path. Consequently, the application of the extended eReaxFF method developed in this work should provide an improved description of a reaction path. As a first demonstration this semiclassical force field was parametrized for hydrogen and oxygen interactions, including water and water's ions. With the modified methodology both the overall accuracy of the force field but also the description of the angles within the molecules in presence of electrons could be improved.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here