Premium
Prediction of p K a s of Late Transition‐Metal Hydrides via a QM/QM Approach
Author(s) -
Patel Prajay,
Wang Jiaqi,
Wilson Angela K.
Publication year - 2020
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.26057
Subject(s) - oniom , solvation , polarizable continuum model , qm/mm , chemistry , cosmo rs , basis set , implicit solvation , computational chemistry , density functional theory , thermodynamics , london dispersion force , solvent , molecular dynamics , molecule , physics , organic chemistry , ionic liquid , catalysis , van der waals force
Three implicit solvation models, the conductor‐like polarizable continuum model (C‐PCM), the conductor‐like screening model (COSMO), and universal implicit solvent model (SMD), combined with a hybrid two layer QM/QM approach (ONIOM), were utilized to calculate the p K a values, using a direct thermodynamic scheme, of a set of Group 10 transition metal (TM) hydrides in acetonitrile. To obtain the optimal combination of quantum methods for ONIOM calculations with implicit solvation models, the influence of factors, such as the choice of density functional and basis set, the atomic radii used to build a cavity in the solvent, and the size of the model system in an ONIOM scheme, was examined. Additionally, the impact of Grimme's empirical dispersion correction and exact exchange was also investigated. The results were calibrated by experimental data. This investigation provides insight about effective models for the prediction of thermodynamic properties of TM‐containing complexes with bulky ligands. © 2019 Wiley Periodicals, Inc.