z-logo
Premium
Does the choice of the crystal structure influence the results of the periodic DFT calculations? A case of glycine alpha polymorph GIPAW NMR parameters computations
Author(s) -
Szeleszczuk Łukasz,
Pisklak Dariusz Maciej,
ZielińskaPisklak Monika
Publication year - 2018
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.25161
Subject(s) - chemistry , glycine , crystal structure , crystallography , computation , crystal (programming language) , nuclear magnetic resonance spectroscopy , hydrogen bond , molecule , computational chemistry , amino acid , stereochemistry , mathematics , algorithm , computer science , organic chemistry , biochemistry , programming language
Glycine is a common amino acid with relatively complex chemistry in solid state. Although several polymorphs (α, β, δ, γ, ε) of crystalline glycine are known, for NMR spectroscopy the most important is a polymorph, which is used as a standard for calibration of spectrometer performance and therefore it is intensively studied by both experimental methods and theoretical computation. The great scientific interest in a glycine results in a large number of crystallographic information files (CIFs) deposited in Cambridge Structural Database (CSD). The aim of this study was to evaluate the influence of the chosen crystal structure of α glycine obtained in different crystallographic experimental conditions (temperature, pressure and source of radiation of α glycine) on the results of periodic DFT calculation. For this purpose the total of 136 GIPAW calculations of α glycine NMR parameters were performed, preceded by the four approaches (“SP”, “only H”, “full”, “full+cell”) of structure preparation. The analysis of the results of those computations performed on the representative group of 34 structures obtained at various experimental conditions revealed that though the structures were generally characterized by good accuracy ( R  < 0.05 for most of them) the results of the periodic DFT calculations performed using the unoptimized structures differed significantly. The values of the standard deviations of the studied NMR parameters were in most cases decreasing with the number of optimized parameters. The most accurate results (of the calculations) were in most cases obtained using the structures with solely hydrogen atoms positions optimized. © 2018 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here