z-logo
Premium
On the applicability of density functional theory to manganese‐based complexes with catalytic activity toward water oxidation
Author(s) -
Gámez José A.,
Hölscher Markus,
Leitner Walter
Publication year - 2017
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.24819
Subject(s) - manganese , density functional theory , yield (engineering) , catalysis , hybrid functional , chemistry , computational chemistry , basis set , chemical physics , thermodynamics , physics , organic chemistry
The present contribution assesses the performance of several popular and accurate density functionals, namely B3LYP, BP86, M06, MN12L, mPWPW91, PBE0, and TPSSh toward manganese‐based coordination complexes. These compounds show promising properties toward application to catalytic water oxidation. Although manganese with N‐ and O‐biding ligands tends to give rise to high spin complexes, the results show that BP86, mPWPW91, and specially MN12L, tend to yield low‐spin complexes. The usage of these functionals for such compounds is, thus, discouraged. All the functionals considered deliver accurate geometries. The present results show, however, that B3LYP delivers geometries deviating from experimental values when compared to the other functionals of the set. M06, PBE0, and TPSSh deliver geometries of similar accuracy, PBE0 outstanding slightly with respect to the other two. © 2017 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here