Premium
A systematic approach to calibrate a transferable polarizable force field parameter set for primary alcohols
Author(s) -
Visscher Koen M.,
Vosmeer C. Ruben,
Luirink Rosa A.,
Geerke Daan P.
Publication year - 2017
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.24702
Subject(s) - van der waals force , polarizability , force field (fiction) , chemistry , hydrogen bond , basis set , work (physics) , coulomb , thermodynamics , dielectric , computational chemistry , water model , molecule , molecular dynamics , density functional theory , physics , quantum mechanics , organic chemistry , electron
In this work, parameters are optimized for a charge‐on‐spring based polarizable force field for linear alcohols. We show that parameter transferability can be obtained using a systematic approach in which the effects of parameter changes on physico‐chemical properties calculated from simulation are predicted. Our previously described QM/MM calculations are used to attribute condensed‐phase polarizabilities, and starting from the non‐polarizable GROMOS 53A5/53A6 parameter set, van der Waals and Coulomb interaction parameters are optimized to reproduce pure‐liquid (thermodynamic, dielectric, and transport) properties, as well as hydration free energies. For a large set of models, which were obtained by combining small perturbations of 10 distinct parameters, values for pure‐liquid properties of the series methanol to butanol were close to experiment. From this large set of models, we selected 34 models without special repulsive van der Waals parameters to distinguish between hydrogen‐bonding and non‐hydrogen‐bonding atom pairs, to make the force field simple and transparent. © 2017 Wiley Periodicals, Inc.