Premium
Visualizing dispersion interactions through the use of local orbital spaces
Author(s) -
Wuttke Axel,
Mata Ricardo A.
Publication year - 2017
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.24508
Subject(s) - intermolecular force , intramolecular force , dispersion (optics) , chemical physics , diamondoid , statistical physics , computational chemistry , water dimer , scalar (mathematics) , computer science , wave function , theoretical physics , molecule , physics , chemistry , quantum mechanics , mathematics , hydrogen bond , geometry
The interpretation of chemical properties/phenomena can often be aided through the use of imagery. The mapping of molecular electrostatic potentials is a prime example, serving as a guideline in the design of novel compounds or understanding transition state stabilization effects. It is today a common tool for theoreticians and experimentalists alike. With the emergence of concepts such as dispersion energy donors, and the overall importance of dispersion in chemical systems, representations targeting such a class of interactions are warranted. In this work, we make use of local orbital analysis to extract dispersion interactions and represent them in a scalar quantity, the Dispersion Interaction Density (DID). A particular advantage of the method is the possibility to represent at the same footing intermolecular and intramolecular interactions in a straightforward fashion from wave function calculations. We present examples for the benzene dimer, several substituted benzenes and a coupled diamondoid molecule. © 2016 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom