Premium
Design of [2]rotaxane through image threshold segmentation of electrostatic potential image
Author(s) -
Liu Pingying,
Chen Qiufeng,
Ma Jing
Publication year - 2016
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.24452
Subject(s) - rotaxane , image (mathematics) , artificial intelligence , image segmentation , computer vision , segmentation , chemistry , computer science , pattern recognition (psychology) , materials science , supramolecular chemistry , molecule , organic chemistry
An electrostatic potential (ESP)‐based image segmentation method has been used to estimate the ability of proton donation and acceptance involved in ring‐rod recognition. The relative binding strength of [2]rotaxane has also been further estimated from the difference of the characteristic image‐segmentation derived ESP between proton donor and proton acceptor. The size and electrostatic compatibility criteria are introduced to guide the design of interlocked [2]rotaxane. A library of 75 thermodynamically stable [2]rotaxane candidates has been generated, including 16 experimentally known systems. The theoretical results for 16 experimentally known [2]rotaxanes are in good agreement with both the experimental association constants and density functional theory‐calculated binding energies. Our ESP‐based image segmentation model is also applicable to the tristable [2]rotaxane molecular shuttle as well as [1]rotaxane with self‐inclusion function, indicating this simple method is generic in the field of constructing other supramolecular architectures formed with donor/acceptor molecular recognition. © 2016 Wiley Periodicals, Inc.