z-logo
Premium
Diffusive dynamics of DNA unzipping in a nanopore
Author(s) -
Stachiewicz Anna,
Molski Andrzej
Publication year - 2016
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.24236
Subject(s) - nanopore , chemical physics , molecular dynamics , potential of mean force , diffusion , brownian dynamics , ionic bonding , chemistry , electric field , kinetics , work (physics) , membrane , nanotechnology , brownian motion , materials science , thermodynamics , computational chemistry , ion , physics , biochemistry , organic chemistry , quantum mechanics
When an electric field is applied to an insulating membrane, movement of charged particles through a nanopore is induced. The measured ionic current reports on biomolecules passing through the nanopore. In this work, we explored the kinetics of DNA unzipping in a nanopore using our coarse‐grained model (Stachiewicz and Molski, J. Comput. Chem. 2015, 36, 947). Coarse graining allowed a more detailed analysis for a wider range of parameters than all‐atom simulations. Dependence of the translocation mode (unzipping or distortion) on the pore diameter was examined, and the threshold voltages were estimated. We determined the potential of mean force, position‐dependent diffusion coefficient, and position‐dependent effective charge for the DNA unzipping. The three molecular profiles were correlated with the ionic current and molecular events. On the unzipping/translocation force profile, two energy maxima were found, one of them corresponding to the unzipping, and the other to the translocation barriers. The unzipping kinetics were further explored using Brownian dynamics. © 2015 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here