Premium
A solvation‐free‐energy functional: A reference‐modified density functional formulation
Author(s) -
Sumi Tomonari,
Mitsutake Ayori,
Maruyama Yutaka
Publication year - 2015
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.23942
Subject(s) - polyatomic ion , solvation , density functional theory , chemistry , molecule , implicit solvation , thermodynamics , computational chemistry , physics , organic chemistry
The three‐dimensional reference interaction site model (3D‐RISM) theory, which is one of the most applicable integral equation theories for molecular liquids, overestimates the absolute values of solvation‐free‐energy (SFE) for large solute molecules in water. To improve the free‐energy density functional for the SFE of solute molecules, we propose a reference‐modified density functional theory (RMDFT) that is a general theoretical approach to construct the free‐energy density functional systematically. In the RMDFT formulation, hard‐sphere (HS) fluids are introduced as the reference system instead of an ideal polyatomic molecular gas, which has been regarded as the appropriate reference system of the interaction‐site‐model density functional theory for polyatomic molecular fluids. We show that using RMDFT with a reference HS system can significantly improve the absolute values of the SFE for a set of neutral amino acid side‐chain analogues as well as for 504 small organic molecules. © 2015 Wiley Periodicals, Inc.