z-logo
Premium
Essential dynamics for the study of microstructures in liquids
Author(s) -
D'Alessando Maira,
Amadei Andrea,
Stener Mauro,
Aschi Massimiliano
Publication year - 2015
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.23814
Subject(s) - molecular dynamics , semiclassical physics , observable , supramolecular chemistry , chemical physics , chemistry , computational chemistry , statistical physics , molecule , computer science , physics , quantum , quantum mechanics , organic chemistry
Essential Dynamics (ED) is a powerful tool for analyzing molecular dynamics (MD) simulations and it is widely adopted for conformational analysis of large molecular systems such as, for example, proteins and nucleic acids. In this study, we extend the use of ED to the study of clusters of arbitrary size constituted by weakly interacting particles, for example, atomic clusters and supramolecular systems. The key feature of the method we present is the identification of the relevant atomic‐molecular clusters to be analyzed by ED for extracting the information of interest. The application of this computational approach allows a straightforward and unbiased conformational study of the local microstructures in liquids, as emerged from semiclassical MD simulations. The good performance of the method is demonstrated by calculating typical observables of liquid water, that is, NMR, NEXAFS O1s, and IR spectra, known to be rather sensitive both to the presence and to the conformational features of hydrogen‐bonded clusters. © 2014 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here