z-logo
Premium
An automated method to find transition states using chemical dynamics simulations
Author(s) -
MartínezNúñez Emilio
Publication year - 2015
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.23790
Subject(s) - formaldehyde , formic acid , molecular dynamics , chemistry , cyanide , transition state , dynamics (music) , computational chemistry , biological system , computer science , materials science , physics , inorganic chemistry , chromatography , organic chemistry , biology , catalysis , acoustics
A procedure to automatically find the transition states (TSs) of a molecular system (MS) is proposed. It has two components: high‐energy chemical dynamics simulations (CDS), and an algorithm that analyzes the geometries along the trajectories to find reactive pathways. Two levels of electronic structure calculations are involved: a low level (LL) is used to integrate the trajectories and also to optimize the TSs, and a higher level (HL) is used to reoptimize the structures. The method has been tested in three MSs: formaldehyde, formic acid (FA), and vinyl cyanide (VC), using MOPAC2012 and Gaussian09 to run the LL and HL calculations, respectively. Both the efficacy and efficiency of the method are very good, with around 15 TS structures optimized every 10 trajectories, which gives a total of 7, 12, and 83 TSs for formaldehyde, FA, and VC, respectively. The use of CDS makes it a powerful tool to unveil possible nonstatistical behavior of the system under study. © 2014 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here