Premium
Parallelization of a multiconfigurational perturbation theory
Author(s) -
Vancoillie Steven,
Delcey Mickaël G.,
Lindh Roland,
Vysotskiy Victor,
Malmqvist PerÅke,
Veryazov Valera
Publication year - 2013
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.23342
Subject(s) - infiniband , computer science , scalability , parallel computing , scaling , supercomputer , memory bandwidth , shared memory , bandwidth (computing) , distributed memory , interconnection , programming paradigm , partitioned global address space , computational science , architecture , latency (audio) , distributed computing , operating system , mathematics , art , computer network , geometry , visual arts , telecommunications , programming language
In this work, we present a parallel approach to complete and restricted active space second‐order perturbation theory, (CASPT2/RASPT2). We also make an assessment of the performance characteristics of its particular implementation in the Molcas quantum chemistry programming package. Parallel scaling is limited by memory and I/O bandwidth instead of available cores. Significant time savings for calculations on large and complex systems can be achieved by increasing the number of processes on a single machine, as long as memory bandwidth allows, or by using multiple nodes with a fast, low‐latency interconnect. We found that parallel efficiency drops below 50% when using 8–16 cores on the shared‐memory architecture, or 16–32 nodes on the distributed‐memory architecture, depending on the calculation. This limits the scalability of the implementation to a moderate amount of processes. Nonetheless, calculations that took more than 3 days on a serial machine could be performed in less than 5 h on an InfiniBand cluster, where the individual nodes were not even capable of running the calculation because of memory and I/O requirements. This ensures the continuing study of larger molecular systems by means of CASPT2/RASPT2 through the use of the aggregated computational resources offered by distributed computing systems. © 2013 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom