Premium
Assessing the quality of absolute hydration free energies among CHARMM‐compatible ligand parameterization schemes
Author(s) -
Knight Jennifer L.,
Yesselman Joseph D.,
Brooks Charles L.
Publication year - 2013
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.23199
Subject(s) - solvation , parameterized complexity , chemistry , solvent models , chemical space , implicit solvation , scaling , surface tension , thermodynamics , computation , molecular dynamics , molecule , statistical physics , computational chemistry , algorithm , computer science , mathematics , physics , biochemistry , geometry , organic chemistry , drug discovery
Multipurpose atom‐typer for CHARMM (MATCH), an atom‐typing toolset for molecular mechanics force fields, was recently developed in our laboratory. Here, we assess the ability of MATCH‐generated parameters and partial atomic charges to reproduce experimental absolute hydration free energies for a series of 457 small neutral molecules in GBMV2, Generalized Born with a smooth SWitching (GBSW), and fast analytical continuum treatment of solvation (FACTS) implicit solvent models. The quality of hydration free energies associated with small molecule parameters obtained from ParamChem, SwissParam, and Antechamber are compared. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, these automated parameterization schemes with GBMV2 and GBSW demonstrate reasonable agreement with experimental hydration free energies (average unsigned errors of 0.9–1.5 kcal/mol and R 2 of 0.63–0.87). GBMV2 and GBSW consistently provide slightly more accurate estimates than FACTS, whereas Antechamber parameters yield marginally more accurate estimates than the current generation of MATCH, ParamChem, and SwissParam parameterization strategies. Modeling with MATCH libraries that are derived from different CHARMM topology and parameter files highlights the importance of having sufficient coverage of chemical space within the underlying databases of these automated schemes and the benefit of targeting specific functional groups for parameterization efforts to maximize both the breadth and the depth of the parameterized space. © 2013 Wiley Periodicals, Inc.