z-logo
Premium
SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
Author(s) -
Faraggi Eshel,
Zhang Tuo,
Yang Yuedong,
Kurgan Lukasz,
Zhou Yaoqi
Publication year - 2011
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21968
Subject(s) - casp , protein structure prediction , protein secondary structure , computer science , algorithm , torsion (gastropod) , protein structure , ab initio , artificial neural network , biological system , artificial intelligence , chemistry , physics , nuclear magnetic resonance , biology , zoology , organic chemistry
Accurate prediction of protein secondary structure is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. The accuracy of ab initio secondary structure prediction from sequence, however, has only increased from around 77 to 80% over the past decade. Here, we developed a multistep neural-network algorithm by coupling secondary structure prediction with prediction of solvent accessibility and backbone torsion angles in an iterative manner. Our method called SPINE X was applied to a dataset of 2640 proteins (25% sequence identity cutoff) previously built for the first version of SPINE and achieved a 82.0% accuracy based on 10-fold cross validation (Q(3)). Surpassing 81% accuracy by SPINE X is further confirmed by employing an independently built test dataset of 1833 protein chains, a recently built dataset of 1975 proteins and 117 CASP 9 targets (critical assessment of structure prediction techniques) with an accuracy of 81.3%, 82.3% and 81.8%, respectively. The prediction accuracy is further improved to 83.8% for the dataset of 2640 proteins if the DSSP assignment used above is replaced by a more consistent consensus secondary structure assignment method. Comparison to the popular PSIPRED and CASP-winning structure-prediction techniques is made. SPINE X predicts number of helices and sheets correctly for 21.0% of 1833 proteins, compared to 17.6% by PSIPRED. It further shows that SPINE X consistently makes more accurate prediction in helical residues (6%) without over prediction while PSIPRED makes more accurate prediction in coil residues (3-5%) and over predicts them by 7%. SPINE X Server and its training/test datasets are available at http://sparks.informatics.iupui.edu/

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here