Premium
Theoretical investigations of the reactivities of four‐membered N‐heterocyclic carbene analogues of the group 13 elements
Author(s) -
Wu ChiShiun,
Su MingDer
Publication year - 2011
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21949
Subject(s) - singlet state , carbene , chemistry , alkene , group (periodic table) , reactivity (psychology) , density functional theory , chemical shift , computational chemistry , cycloaddition , crystallography , main group element , stereochemistry , organic chemistry , catalysis , transition metal , physics , excited state , atomic physics , medicine , alternative medicine , pathology
The potential energy surfaces for the chemical reactions of four‐membered N‐heterocyclic group 13 heavy carbeneoid species have been studied using density functional theory (Becke, 3‐parameter, Lee‐Yang‐Parr (B3LYP)/Los Alamos National Laboratory 2‐Double‐Zeta (LANL2DZ)). Five four‐membered group 13 heavy carbeneoid species, i Pr 2 NC(NAr) 2 E:, where E = B, Al, Ga, In, and Tl, have been chosen as model reactants in this work. Also, three kinds of chemical reactions, CH bond insertion, alkene cycloaddition, and dimerization, have been used to study the chemical reactivities of these group 13 four‐membered N‐heterocyclic carbeneoid species. In principle, our present theoretical work predicts that the larger the ∠NEN bond angle of the four‐membered group 13 i Pr 2 NC(NAr) 2 E: species, the smaller the singlet–triplet splitting, the lower the activation barrier, and, in turn, the more rapid its chemical reactions to various chemical species. Moreover, our theoretical investigations suggest that the relative carbenic reactivity decreases in the following order: B > Al > Ga > In > Tl. That is, the heavier the group 13 atom (E), the more stable its four‐membered carbeneoid toward chemical reactions is. As a result, our computations predict that the four‐membered heavy group 13 i Pr 2 NC(NAr) 2 E: species (E = Al, Ga, In, and Tl) should be both kinetically and thermodynamically stable, and can be readily synthesized and isolated at room temperature. Furthermore, the singlet–triplet energy splitting of the four‐membered group 13 i Pr 2 NC(NAr) 2 E: species, as described in the configuration mixing model attributed to the work of Pross and Shaik, can be used as a diagnostic tool to predict their reactivities. The results obtained allow a number of predictions to be made. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011