Premium
A semiempirical long‐range corrected exchange correlation functional including a short‐range Gaussian attenuation (LCgau‐B97)
Author(s) -
Song JongWon,
Peng Daoling,
Hirao Kimihiko
Publication year - 2011
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21912
Subject(s) - rydberg formula , density functional theory , excitation , hybrid functional , ground state , atomic physics , excited state , gaussian , range (aeronautics) , physics , chemistry , attenuation , quantum mechanics , ionization , materials science , ion , composite material
We applied an improved long‐range correction scheme including a short‐range Gaussian attenuation (LCgau) to the Becke97 (B97) exchange correlation functional. In the optimization of LCgau‐B97 functional, the linear parameters are determined by least squares fitting. Optimizing μ parameter (0.2) that controls long‐range portion of Hartree‐Fock (HF) exchange to excitation energies of large molecules (Chai and Head‐Gordon, J Chem Phys 2008, 128, 084106) and additional short‐range Gaussian parameters ( a = 0.15 and k = 0.9) that controls HF exchange inclusion ranging from short‐range to mid‐range (0.5–3 Å) to ground state properties achieved high performances of LCgau‐B97 simultaneously on both ground state and excited state properties, which is better than other tested semiempirical density functional theory (DFT) functionals, such as ωB97, ωB97X, BMK, and M0x‐family. We also found that while a small μ value (∼0.2) in LC‐DFT is appropriate to the local excitation and intramolecular charge‐transfer excitation energies, a larger μ value (0.42) is desirable in the Rydberg excitation‐energy calculations. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011