z-logo
Premium
He   2 ++ molecular ion in a strong time‐dependent magnetic field: A current‐density functional study
Author(s) -
. Vikas
Publication year - 2011
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21822
Subject(s) - density functional theory , current density , atomic physics , chemistry , ion , molecular dynamics , charge density , magnetic field , molecular physics , electron , physics , computational chemistry , quantum mechanics , organic chemistry
The He   2 ++molecular ion exposed to a strong ultrashort time‐dependent (TD) magnetic field of the order of 10 9 G is investigated through a quantum fluid dynamics (QFD) and current‐density functional theory (CDFT) based approach using vector exchange‐correlation (XC) potential and energy density functional that depend not only on the electronic charge‐density but also on the current density. The TD‐QFD‐CDFT computations are performed in a parallel internuclear‐axis and magnetic field‐axis configuration at the field‐free equilibrium internuclear separation R = 1.3 au with the field‐strength varying between 0 and 10 11 G. The TD behavior of the exchange‐ and correlation energy of the He   2 ++is analyzed and compared with that obtained using a [ B ‐TD‐QFD‐density functional theory (DFT)] approach based on the conventional TD‐DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge‐density alone. The CDFT based approach yields TD exchange‐ and correlation energy and TD electronic charge‐density significantly different from that obtained using the conventional TD‐DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT‐based approach is traced to the TD current‐density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He   2 ++molecular ion is elucidated by treating electronic charge density as an electron‐“fluid” in the terminology of QFD. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here