Premium
Relativistic effects in HgHe and HgXe CCSD(T) ground state potential curves. Low‐density viscosity simulations of Hg:Xe mixture
Author(s) -
Bučinský Lukáš,
Biskupič Stanislav,
Ilčin Michal,
Lukeš Vladimír,
Laurinc Viliam
Publication year - 2010
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21629
Subject(s) - ground state , relativistic quantum chemistry , hamiltonian (control theory) , anharmonicity , coupled cluster , chemistry , potential energy , atomic physics , physics , quantum mechanics , molecule , mathematical optimization , mathematics
Abstract The comparison of coupled cluster with single and double excitations and with perturbative correction of triple excitations [CCSD(T)] ground state potential curves of mercury with rare gases (RG): HgHe and HgXe, at several levels of theory is presented. The scalar relativistic (REL) effects and spin‐orbit coupling effects in the ground state potential curves of these weakly bounded dimers are considered. The CCSD(T) ground state potential curves at the level of the Dirac‐Coulomb Hamiltonian (DCH) are compared with CCSD(T) curves at the level of 4‐component spin‐free modified DCH, the scalar 2nd order Douglas‐Kroll‐Hess (DKH2) and the nonrelativistic (NR‐LL) (Lévy‐Leblond) Hamiltonian. In addition, London‐Drude formula and SCF interaction energy curves are employed in the analysis of different contributions of REL effects in dissociation energies of HgRG and Hg 2 dimers. Moreover, the large anharmonicity of the HgHe ground state potential curve is highlighted. The computationally less demanding scalar DKH2 Hamiltonian is employed to calculate the HgXe, Hg 2 , and Xe 2 all electron CCSD(T) ground state potential curves in highly augmented quadruple zeta basis sets. These potential curves are used to simulate the shear viscosity of mercury, xenon, and mercury‐xenon (Hg:Xe) mixture. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011