Premium
Performance of 3D‐space‐based atoms‐in‐molecules methods for electronic delocalization aromaticity indices
Author(s) -
Heyndrickx Wouter,
Salvador Pedro,
Bultinck Patrick,
Solà Miquel,
Matito Eduard
Publication year - 2011
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21621
Subject(s) - aromaticity , delocalized electron , ring (chemistry) , disjoint sets , molecule , chemistry , atoms in molecules , computational chemistry , space (punctuation) , atom (system on chip) , chemical physics , mathematics , computer science , combinatorics , organic chemistry , operating system , embedded system
Several definitions of an atom in a molecule (AIM) in three‐dimensional (3D) space, including both fuzzy and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures, namely, I ring and multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived from the classical Hirshfeld method and from Bader's quantum theory of atoms in molecules. For bonded atoms, all methods yield ESI values in very good agreement, especially for C–C interactions. In the case of nonbonded interactions, there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D space. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.