z-logo
Premium
New procedure to evaluate aromaticity at the density functional theory, Hartree–Fock, and post‐self‐consistent field levels
Author(s) -
Bao Peng,
Yu ZhongHeng
Publication year - 2010
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21614
Subject(s) - chemistry , cyclobutadiene , delocalized electron , cyclooctatetraene , hartree–fock method , wave function , configuration interaction , atomic orbital , aromaticity , molecular orbital , field (mathematics) , computational chemistry , density functional theory , electron , atomic physics , molecular physics , molecule , physics , quantum mechanics , mathematics , organic chemistry , pure mathematics
The spatial exchange interaction, arising from the exchange‐type two‐electron integrals ( $ i_pj_q|i_p^\prime j_q^\prime $ ) between two different groups P and Q, is another driving force for the delocalization of π‐electrons besides orbital charge‐transfer and exchange interactions. We have developed a new combination program for restricted geometry optimization, in which all of the orbital and spatial interactions among isolated groups were excluded from the localized geometry of a conjugated molecule. This was achieved by deleting particular Fock elements and the 15 types of exchange‐type two‐electron integrals, ensuring that the corresponding π‐electrons are completely localized within their respective groups and the π‐orbitals are fully localized. The extra stabilization energy (ESE) of benzene is −36.3 kcal/mol (B3LYP/6‐31G*), and the level of density functional theory, Hartree–Fock, and post‐self‐consistent field (Møller–Plesset 2, configuration interaction singles and doubles, and singles and doubles coupled‐cluster) and the basis sets have slight effect on the ESE. Based on the comparisons between our procedure, Morokuma's energy decomposition analysis and the block‐localized wave function method, it was confirmed that our program calculates reliable results. The nonaromaticity of acyclic polyenes and antiaromaticity of cyclobutadiene and planar cyclooctatetraene were also estimated. Comparison of the CC single bond lengths in the ground state with its π‐localized geometries showed that shortening of the single bonds in acyclic polyenes and butadiyne should be attributed to different hybridization, demonstrating that the effect of π‐delocalization on single bonds is so small as to be negligible. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here