z-logo
Premium
Random number generators tested on quantum Monte Carlo simulations
Author(s) -
Hongo Kenta,
Maezono Ryo,
Miura Kenichi
Publication year - 2010
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21509
Subject(s) - pseudorandom number generator , generator (circuit theory) , monte carlo method , random number generation , statistical physics , computer science , linear congruential generator , algorithm , energy (signal processing) , recursion (computer science) , mathematics , physics , quantum mechanics , statistics , power (physics)
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th‐order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX‐[0–4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX‐4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here