Premium
Computation of determinant expansion coefficients within the graphically contracted function method
Author(s) -
Gidofalvi Gergely,
Shepard Ron
Publication year - 2009
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21275
Subject(s) - wave function , atomic orbital , computation , configuration interaction , function (biology) , recursion (computer science) , basis function , mathematics , slater determinant , electron , statistical physics , mathematical analysis , quantum mechanics , algorithm , physics , evolutionary biology , biology , excited state
Most electronic structure methods express the wavefunction as an expansion of N ‐electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of arc factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009