z-logo
Premium
Modeling the structure‐property relationships of nanoneedles: A journey toward nanomedicine
Author(s) -
Poater Albert,
Saliner Ana Gallegos,
CarbóDorca Ramon,
Poater Jordi,
Solà Miquel,
Cavallo Luigi,
Worth Andrew P.
Publication year - 2008
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.21041
Subject(s) - nanomedicine , nanotechnology , drug delivery , nanoscopic scale , semiconductor , ionic bonding , materials science , chemistry , ion , nanoparticle , organic chemistry , optoelectronics
Innovative biomedical techniques operational at the nanoscale level are being developed in therapeutics, including advanced drug delivery systems and targeted nanotherapy. Ultrathin needles provide a low invasive and highly selective means for molecular delivery and cell manipulation. This article studies the geometry and the stability of a family of packed carbon nanoneedles (CNNs) formed by units of 4, 6, and 8 carbons, by using quantum chemistry computational modeling methods. At the limit of infinite‐length, these CNNs might act as semiconductors, especially when the number of terminal units is increased. CNNs are also potentially able to stabilize ions around their structure. Therefore, due to the apolar characteristics of CNNs and their ability to carry ionic species, they would be suitable to act as drug carriers through nonpolar biologic media. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here