z-logo
Premium
Information theoretical measures to analyze trajectories in rational molecular design
Author(s) -
Hamacher K.
Publication year - 2007
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.20759
Subject(s) - computer science , rational design , computational chemistry , chemistry , theoretical computer science , nanotechnology , materials science
We develop a new methodology to analyze molecular dynamics trajectories and other time series data from simulation runs. This methodology is based on an information measure of the difference between distributions of various data extract from such simulations. The method is fast as it only involves the numerical integration/summation of the distributions in one dimension while avoiding sampling issues at the same time. The method is most suitable for applications in which different scenarios are to be compared, e.g. to guide rational molecular design. We show the power of the proposed method in an application of rational drug design by reduced model computations on the BH3 motif in the apoptosis inducing BCL 2 protein family. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here