z-logo
Premium
Numerical instabilities in the computation of pseudopotential matrix elements
Author(s) -
Wüllen Christoph van
Publication year - 2005
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.20325
Subject(s) - basis function , basis (linear algebra) , matrix (chemical analysis) , angular momentum , pseudopotential , numerical stability , wave function , mathematics , function (biology) , numerical analysis , mathematical analysis , physics , statistical physics , quantum mechanics , geometry , chemistry , chromatography , evolutionary biology , biology
Steep high angular momentum Gaussian basis functions in the vicinity of a nucleus whose inner electrons are replaced by an effective core potential may lead to numerical instabilities when calculating matrix elements of the core potential. Numerical roundoff errors may be amplified to an extent that spoils any result obtained in such a calculation. Effective core potential matrix elements for a model problem are computed with high numerical accuracy using the standard algorithm used in quantum chemical codes and compared to results of the MOLPRO program. Thus, it is demonstrated how the relative and absolute errors depend an basis function angular momenta, basis function exponents and the distance between the off‐center basis function and the center carrying the effective core potential. Then, the problem is analyzed and closed expressions are derived for the expected numerical error in the limit of large basis function exponents. It is briefly discussed how other algorithms would behave in the critical case, and they are found to have problems as well. The numerical stability could be increased a little bit if the type 1 matrix elements were computed without making use of a partial wave expansion. © 2005 Wiley Periodicals, Inc., J Comput Chem 27: 135–141 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here