Premium
6‐31G* basis set for third‐row atoms
Author(s) -
Rassolov Vitaly A.,
Ratner Mark A.,
Pople John A.,
Redfern Paul C.,
Curtiss Larry A.
Publication year - 2001
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/jcc.1058
Subject(s) - sto ng basis sets , basis set , atomic orbital , valence (chemistry) , chemistry , atomic physics , gaussian , basis (linear algebra) , gaussian orbital , polarization (electrochemistry) , computational chemistry , crystallography , linear combination of atomic orbitals , physics , molecule , mathematics , quantum mechanics , geometry , density functional theory , electron , organic chemistry
Medium basis sets based upon contractions of Gaussian primitives are developed for the third‐row elements Ga through Kr. The basis functions generalize the 6‐31G and 6‐31G* sets commonly used for atoms up to Ar. A reexamination of the 6‐31G* basis set for K and Ca developed earlier leads to the inclusion of 3d orbitals into the valence space for these atoms. Now the 6‐31G basis for the whole third‐row K through Kr has six primitive Gaussians for 1s, 2s, 2p, 3s, and 3p orbitals, and a split‐valence pair of three and one primitives for valence orbitals, which are 4s, 4p, and 3d. The nature of the polarization functions for third‐row atoms is reexamined as well. The polarization functions for K, Ca, and Ga through Kr are single set of Cartesian d‐type primitives. The polarization functions for transition metals are defined to be a single 7f set of uncontracted primitives. Comparison with experimental data shows good agreement with bond lengths and angles for representative vapor‐phase metal complexes. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 976–984, 2001