Premium
The epicenter of chromosomal fragility of Fra14A2, the mouse ortholog of human FRA3B common fragile site, is largely attached to the nuclear matrix in lymphocytes but not in other cell types that do not express such a fragility
Author(s) -
GuadarramaPonce Rolando,
ArandaAnzaldo Armando
Publication year - 2020
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.29444
Subject(s) - chromosomal fragile site , fhit , biology , nuclear matrix , genetics , gene , metaphase , genome instability , suppressor , chromosome , microbiology and biotechnology , tumor suppressor gene , dna , dna damage , carcinogenesis , chromatin
Common fragile sites (CFSs) correspond to chromosomal regions susceptible to present breaks, discontinuities or constrictions in metaphase chromosomes from cells subjected to replication stress. They are considered as genomic regions intrinsically difficult to replicate and they are evolutionary conserved at least in mammals. However, the recent discovery that CFSs are cell‐type specific indicates that DNA sequence by itself cannot account for CFS instability. Nevertheless, the large gene FHIT that includes FRA3B, the most highly expressed CFS in human lymphocytes, is commonly deleted in a variety of tumors suggesting a tumor suppressor role for its product. Here, we report that the epicenter of fragility of Fra14A2/ Fhit , the mouse ortholog of human FRA3B/ FHIT that like its human counterpart is the most highly expressed CFS in mouse lymphocytes, is largely attached to the nuclear matrix compartment in naive B lymphocytes but not in primary hepatocytes or cortical neurons that do not express such a CFS. Our results suggest a structural explanation for the difficult‐to‐replicate nature of such a region and so for its common fragility in lymphocytes, that is independent of the possible tumor suppressor role of the gene harboring such CFS.