Premium
Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis
Author(s) -
Shen Shu,
Kong Junjie,
Qiu Yiwen,
Yang Xianwei,
Wang Wentao,
Yan Lvnan
Publication year - 2019
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.28290
Subject(s) - kegg , biology , gene , computational biology , gene expression , transcriptome , genetics
Abstract Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. However, the mechanistic relationships among various genes and signaling pathways are still largely unclear. In this study, we aimed to elucidate potential core candidate genes and pathways in HCC. The expression profiles GSE14520, GSE25097, GSE29721, and GSE62232, which cover 606 tumor and 550 nontumour samples, were downloaded from the Gene Expression Omnibus (GEO) database. Furthermore, HCC RNA‐seq datasets were also downloaded from the Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were filtered using R software, and we performed gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using the online databases DAVID 6.8 and KOBAS 3.0. Furthermore, the protein‐protein interaction (PPI) network complex of these DEGs was constructed by Cytoscape software, the molecular complex detection (MCODE) plug‐in and the online database STRING. First, a total of 173 DEGs (41 upregulated and 132 downregulated) were identified that were aberrantly expressed in both the GEO and TCGA datasets. Second, GO analysis revealed that most of the DEGs were significantly enriched in extracellular exosomes, cytosol, extracellular region, and extracellular space. Signaling pathway analysis indicated that the DEGs had common pathways in metabolism‐related pathways, cell cycle, and biological oxidations. Third, 146 nodes were identified from the DEG PPI network complex, and two important modules with a high degree were detected using the MCODE plug‐in. In addition, 10 core genes were identified, TOP2A, NDC80, FOXM1, HMMR, KNTC1, PTTG1, FEN1, RFC4, SMC4, and PRC1. Finally, Kaplan‐Meier analysis of overall survival and correlation analysis were applied to these genes. The abovementioned findings indicate that the identified core genes and pathways in this bioinformatics analysis could significantly enrich our understanding of the development and recurrence of HCC; furthermore, these candidate genes and pathways could be therapeutic targets for HCC treatment.