Premium
Cancer Cytokines and the Relevance of 3D Cultures for Studying Those Implicated in Human Cancers
Author(s) -
Maddaly Ravi,
Subramaniyan Aishwarya,
Balasubramanian Harini
Publication year - 2017
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.25970
Subject(s) - cancer , carcinogenesis , cancer cell , biology , cytokine , cancer research , angiogenesis , extracellular matrix , immunology , cell culture , microbiology and biotechnology , genetics
Cancers are complex conditions and involve several factors for oncogenesis and progression. Of the various factors influencing the physiology of cancers, cytokines are known to play significant roles as mediators of functions. Intricate cytokine networks have been identified in cancers and interest in cytokines associated with cancers has been gaining ground. Of late, some of these cytokines are even identified as potential targets for cancer therapy apart from a few others such as IL‐6 being identified as markers for disease prognosis. Of the major contributors to cancer research, cancer cell lines occupy the top slot as the most widely used material in vitro. In vitro cell cultures have seen significant evolution by the introduction of 3‐dimensional (3D) culture systems. 3D cell cultures are now widely accepted as excellent material for cancer research which surpass the traditional monolayer cultures. Cancer research has benefited from 3D cell cultures for understanding the various hallmarks of cancers. However, the potential of these culture systems are still unexploited for cancer cytokine research compared to the other aspects of cancers such as gene expression changes, drug‐induced toxicity, morphology, angiogenesis, and invasion. Considering the importance of cancer cytokines, 3D cell cultures can be better utilized in understanding their roles and functions. Some of the possibilities where 3D cell cultures can contribute to cancer cytokine research arise from the distinct morphology of the tumor spheroids, the extracellular matrix (ECM), and the spontaneous occurrence of nutrient and oxygen gradients. Also, the 3D culture models enable one to co‐culture different types of cells as a simulation of in vivo conditions, enhancing their utility to study cancer cytokines. We review here the cancer associated cytokines and the contributions of 3D cancer cell cultures for studying cancer cytokines. J. Cell. Biochem. 118: 2544–2558, 2017. © 2017 Wiley Periodicals, Inc.