Premium
NS5ATP13 Promotes Liver Fibrogenesis Via Activation of Hepatic Stellate Cells
Author(s) -
Li Yaru,
Liu Shunai,
Han Ming,
Lu Hongping,
Wang Qi,
Zhang Yu,
Tursun Kelbinur,
Li Zhongshu,
Feng Shenghu,
Cheng Jun
Publication year - 2017
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.25913
Subject(s) - hepatic stellate cell , chemistry , microbiology and biotechnology , cancer research , medicine , biology
Liver fibrosis is a reversible wound‐healing response to any etiology of chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) is the key event in liver fibrogenesis. Generally, persistent activation and proliferation of HSCs results in liver fibrosis progression, while primary mechanisms of liver fibrosis resolution are apoptosis and reversion to a quiescent phenotype of activated HSCs. NS5ATP13 (HCV NS5A‐transactivated protein 13) is involved in nucleologenesis and tumorigenesis, but its role in liver fibrosis and HSC activation remains unclear. This study found that NS5ATP13 was upregulated in both fibrotic liver tissues and activated human HSCs induced by TGF‐β1. Moreover, NS5ATP13 enhanced extracellular matrix (ECM) production and HSC activation, with or without TGF‐β1 treatment, likely involving the TGF‐β1/Smad3 signaling pathway. Additionally, NS5ATP13 boosted HSC proliferation by inhibiting cell apoptosis. Furthermore, HCV NS5A promoted the profibrogenic effect of NS5ATP13 partly through TGF‐β1 and NF‐κB p65 (RelA) upregulation. Meanwhile, NS5ATP13 was required for the pro‐fibrogenic effect of NF‐κB. Moreover, NS5ATP13 and NF‐κB phosphorylation as well as HSC activation were reduced by CX‐4945, a CK2 specific inhibitor. These findings indicated that NS5ATP13 acts as a profibrogenic factor, providing a potential target for antifibrotic therapies. J. Cell. Biochem. 118: 2463–2473, 2017. © 2017 Wiley Periodicals, Inc.