Premium
Dose‐dependent effects of nicotine on proliferation and differentiation of human bone marrow stromal cells and the antagonistic action of vitamin C
Author(s) -
Shen Yue,
Liu Haixiao,
Ying Xiaozhou,
Yang Shizhou,
Nie Pengfei,
Cheng Shaowen,
Wang Wei,
Cheng Xiaojie,
Peng Lei,
Xu Huazi
Publication year - 2013
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.24512
Subject(s) - nicotine , osteocalcin , alkaline phosphatase , chemistry , endocrinology , stromal cell , medicine , bone marrow , von kossa stain , vitamin , biology , biochemistry , enzyme
A range of biological and molecular effects caused by nicotine are considered to effect bone metabolism. Vitamin C functions as a biological antioxidant. This study was to evaluate the in vitro effects of nicotine on human bone marrow stromal cells and whether Vitamin C supplementation show the antagonism action to high concentration nicotine. We used CCK‐8, alkaline phosphatase (ALP) activity assay, Von Kossa staining, real‐time polymerase chain reaction and Western Blot to evaluate the proliferation and osteogenic differentiation. The results indicated that the proliferation of BMSCs increased at the concentration of 50, 100 ng/ml, got inhibited at 1,000 ng/ml. When Vitamin C was added, the OD for proliferation increased. For ALP staining, we found that BMSCs treated with 50 and 100 ng/ml nicotine showed a higher activity compared with the control, and decreased at the 1,000 ng/ml. Bone morphogenetic protein‐2 (BMP‐2) expression and the calcium depositions decreased at 100 and 1,000 ng/ml nicotine, while the addition of Vitamin C reversed the down regulation. By real‐time PCR, we detected that the mRNA expression of collagen type I (COL‐I) and ALP were also increased in 50 and 100 ng/ml nicotine groups ( P < 0.05), while reduced at 1,000 ng/ml ( P < 0.05). When it came to osteocalcin (OCN), the changes were similar. Taken all together, it is found that nicotine has a two‐phase effect on human BMSCs, showing that low level of nicotine could promote the proliferation and osteogenic differentiation while the high level display the opposite effect. Vitamin C could antagonize the inhibitory effect of higher concentration of nicotine partly. J. Cell. Biochem. 114: 1720–1728, 2013. © 2013 Wiley Periodicals, Inc.