z-logo
Premium
The Mycobacterium DosR regulon structure and diversity revealed by comparative genomic analysis
Author(s) -
Chen Tian,
He Liming,
Deng Wanyan,
Xie Jianping
Publication year - 2013
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.24302
Subject(s) - regulon , mycobacterium tuberculosis , regulator , biology , pathogen , computational biology , tuberculosis , genetics , gene , regulation of gene expression , medicine , pathology
Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), which claims approximately two million people annually, remains a global health concern. The non‐replicating or dormancy like state of this pathogen which is impervious to anti‐tuberculosis drugs is widely recognized as the culprit for this scenario. The dormancy survival regulator (DosR) regulon, composed of 48 co‐regulated genes, is held as essential for Mtb persistence. The DosR regulon is regulated by a two‐component regulatory system consisting of two sensor kinases—DosS (Rv3132c) and DosT (Rv2027c), and a response regulator DosR (Rv3133c). The underlying regulatory mechanism of DosR regulon expression is very complex. Many factors are involved, particularly the oxygen tension. The DosR regulon enables the pathogen to persist during lengthy hypoxia. Comparative genomic analysis demonstrated that the DosR regulon is widely distributed among the mycobacterial genomes, ranging from the pathogenic strains to the environmental strains. In‐depth studies on the DosR response should provide insights into its role in TB latency in vivo and shape new measures to combat this exceeding recalcitrant pathogen. J. Cell. Biochem. 114: 1–6, 2012. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here