z-logo
Premium
Arachidonic acid induces an increase of β‐1,4‐galactosyltransferase I expression in MDA‐MB‐231 breast cancer cells
Author(s) -
VillegasComonfort Socrates,
SernaMarquez Nathalia,
GalindoHernandez Octavio,
NavarroTito Napoleon,
Salazar Eduardo Perez
Publication year - 2012
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.24209
Subject(s) - galactosyltransferase , arachidonic acid , breast cancer , cancer research , chemistry , medicine , cancer , endocrinology , microbiology and biotechnology , biology , biochemistry , enzyme
Arachidonic acid (AA) is a common dietary n‐6 cis polyunsaturated fatty acid that under physiological conditions is present in an esterified form in cell membrane phospholipids, and it might be present in the extracellular microenvironment. AA and its metabolites are implicated in FAK activation and cell migration in MDA‐MB‐231 breast cancer cells, and an epithelial‐to‐mesenchymal‐like transition process in mammary non‐tumorigenic epithelial cells MCF10A. During malignant transformation is present an altered expression of glycosiltransferases, which promote changes on the glycosilation of cell‐surface proteins. The β‐1,4‐galactosyltransferase I (GalT I) is an enzyme that participates in a variety of biological functions including cell growth, migration, and spreading. However, the participation of AA in the regulation of GalT I expression and the role of this enzyme in the cell adhesion process in breast cancer cells remains to be investigated. In the present study, we demonstrate that AA induces an increase of GalT I expression through a PLA2α, Src, ERK1/2, and LOXs activities‐dependent pathway in MDA‐MB‐231 breast cancer cells. Moreover, MDA‐MB‐231 cells adhere to laminin via GalT I expression and pretreatment of cells with AA induces an increase of cell adhesion to laminin. In conclusion, our findings demonstrate, for the first time, that AA promotes an increase of GalT I expression through an AA metabolism, Src and ERK1/2 activities‐dependent pathway, and that GalT I plays a pivotal role in cell adhesion to laminin in MDA‐MB‐231 breast cancer cells. J. Cell. Biochem. 113: 3330–3341, 2012. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here