z-logo
Premium
Estrogen response in the hFOB 1.19 human fetal osteoblastic cell line stably transfected with the human estrogen receptor gene
Author(s) -
Harris Steven A.,
Tau Kimberly R.,
Enger Robert J.,
Toft David O.,
Riggs B. Lawrence,
Spelsberg Thomas C.
Publication year - 1995
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.240590209
Subject(s) - transfection , estrogen receptor , cell culture , microbiology and biotechnology , estrogen , western blot , luciferase , biology , osteoblast , chemistry , endocrinology , gene , in vitro , biochemistry , genetics , cancer , breast cancer
The gene coding for the human wild‐type estrogen receptor (ER) was stably transfected into the human fetal osteoblastic cell line hFOB 1.19, a clonal cell line which is conditionally immortilized with a temperature sensitive mutant of SV40 large T antigen (tsA58). Five subclones were obtained which express various levels of ER mRNA and protein. The subclone with the highest level of functional (nuclear bound) ER, hFOB/ER9, contained 3,931 (±1,341) 17β‐estradiol molecules bound/nucleus as determined by the nuclear binding (NB) assay. Using the dextran coated charcoal (DCC) method, the level of total cytosolic ER measured was 204 (±2) fmol/mg protein. This subclone was examined further for estradiol (E 2 ) responsiveness. The ER expressed in hFOB/ER9 cells was shown to be functional using a transiently transfected ERE‐TK‐luciferase construct. Expression of luciferase from this construct increased ∼25‐fold in hFOB/ER9 cells following 10 −9 M E 2 treatment. This effect on ERE‐TK‐luciferase expression was both dose and steroid dependant. Further, treatment of hFOB/ER9 cells with 10 −9 M E 2 resulted in a 2.5–4.0‐fold increase in endogenous progesterone receptor (PR) levels detected by steroid binding assays, and a noticeable increase in both the A and B forms of PR by western blot assay. The establishment of this estrogen responsive human osteoblastic cell line should provide an excellent model system for the study of estrogen action on osteoblast function. © 1995 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here