z-logo
Premium
Influence of mitomycin C on endothelial monolayer regeneration in vitro
Author(s) -
Coomber Brenda L.
Publication year - 1992
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.240500310
Subject(s) - biology , mitomycin c , microbiology and biotechnology , endothelial stem cell , cell , in vitro , biochemistry , genetics
This study examines the effect of Mitomycin C, a fungal toxin which inhibits DNA synthesis, on the regeneration of partially denuded large vessel endothelium in vitro. Monolayers of bovine pulmonary artery endothelial cells were treated with Mitomycin C prior to or immediately following partial denudation and were incubated in the continuing presence of Mitomycin C; the effects of this treatment on monolayer repair, cell proliferation, and other aspects of endothelial phenotye were monitored. Cell proliferation, DNA, RNA, and protein synthesis were all reduced in a dose dependent manner in treated cultures. Incubation with Mitomycin C for 48 h or longer resulted in reduced cell spreading, and rounding up and loss of cells from both intact and partially denuded cultures. Effects were less severe with lower doses and shorter incubation times. However, significant reductions in monolayer regeneration occurred within 8 h of incubation, sufficiently early to suggest that Mitomycin C may affect aspects of the regeneration process independent of cell proliferation. Polarization/spreading of cells at the denudation edge was monitored by fluorescence staining for golgi with C 5 ‐DMB‐ceramide, and for centrioles with antibodies to tubulin. Centrioles and golgi rapidly reoriented to a location at the putative leading edge of control cultures. Mitomycin C treatment had no effect on centriole reorientation, but caused a significant delay in golgi localization. These results suggest that Mitomycin C inhibits endothelial monolayer regeneration by mechanisms independent of cell proliferation and DNA synthesis, perhaps by interfering with cell spreading or translocation at the wound edge. © 1992 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here