z-logo
Premium
Mycoplasma contamination alters 2′‐deoxyadenosine metabolism in deoxycoformycin‐treated mouse leukemia cells
Author(s) -
Plagemann Peter G. W.,
Woffendin Clive
Publication year - 1990
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.240430207
Subject(s) - deoxyadenosine , deamination , biochemistry , deoxycoformycin , biology , mycoplasma , chemistry , adenosine , microbiology and biotechnology , enzyme , adenosine deaminase
Deoxycoformycin‐treated P388 and L1210 mouse leukemia cells salvage 2′‐deoxyadenosine from the medium only inefficiently, because deoxyadenosine deamination is blocked and its phosphorylation is limited by feedback controls. Mycoplasma contamination at a level that had no significant effect on the growth of the cells increased the salvage of deoxyadenosine >10 fold over a 90 min period of incubation at 37°C, but in this case deoxyadenosine was mainly incorporated into ribonucleotides and RNA via adenine formed from deoxyadenosine by mycoplasma adenosine phosphorylase. Deoxyadenosine was an efficient substrate for this enzyme, in contrast to 2′, 3′‐dideoxyadenosine which was not phosphorolyzed. Mycoplasma infection was confirmed by the presence of uracil phosphoribosyltransferase activity and by culture isolation. The contaminant has been identified as Mycoplasma orale . Mycoplasma infection had no effect on the deamination and phosphorylation of deoxyadenosine and adenosine, on the salvage of hypoxanthine and adenine, or on the degradation of dAMP and dATP by the cells or on their acid and alkaline phosphatase activities.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here