z-logo
Premium
Vorinostat, SAHA, represses telomerase activity via epigenetic regulation of telomerase reverse transcriptase in non‐small cell lung cancer cells
Author(s) -
Li ChienTe,
Hsiao YiMin,
Wu TzuChin,
Lin Yuwen,
Yeh KunTu,
Ko JiunnLiang
Publication year - 2011
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.23229
Subject(s) - vorinostat , telomerase reverse transcriptase , cancer research , telomerase , methyltransferase , biology , histone deacetylase , microbiology and biotechnology , epigenetics , chemistry , histone , methylation , biochemistry , gene
Vorinostat (suberoylanilide hydroxamic acid), a class of histone deacetylase inhibitors, represents an emerging class of anticancer agents currently progressing in clinical trials. It causes cell growth inhibition, differentiation, and apoptosis of many tumor types in vitro and in vivo. Recently, it was reported that hTERT is one of the targets for cancer therapy in cancer cells. Telomerase repeat amplification protocol assay was used to analyze the expression of hTERT after vorinostat treatment in the A549 lung cancer cells. Vorinostat inhibited telomerase activity by reducing the expression of human telomerase reverse transcriptase (hTERT) in A549 human lung cancer cells. The epigenetic regulation mechanism is responsible for the repression of hTERT by vorinostat, analyzed through the methylation‐specific PCR and bisulfite sequencing of the hTERT promoter. Vorinostat induced the demethylation of site‐specific CpGs on the promoter region of hTERT, which was caused by the down‐regulation of DNA methyltransferases. DNA methyltransferases (DNMT1 and DNMT3b) were also decreased in vorinostat‐treated A549 cancer cells. Furthermore, chromatin immunoprecipitation analysis of the hTERT promoter revealed that vorinostat decreased the level of inactive chromatin markers dimethyl‐H3K9, and the declined binding of DNMT1 and DNMT3b were associated. The novel insights showed that vorinostat down‐regulated telomerase via epigenetic alteration in lung cancer to vorinostat‐mediated cancer‐specific therapies. J. Cell. Biochem. 112: 3044–3053, 2011. © 2011 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here