Premium
Involvement of integrin up‐regulation in RANKL/RANK pathway of chondrosarcomas migration
Author(s) -
Hsu ChinJung,
Lin TsangYu,
Kuo ChienChung,
Tsai ChunHao,
Lin MouZen,
Hsu HorngChaung,
Fong YiChin,
Tang ChihHsin
Publication year - 2010
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.22677
Subject(s) - rankl , mapk/erk pathway , integrin , mek inhibitor , cancer research , chemistry , cell migration , microbiology and biotechnology , chondrosarcoma , signal transduction , activator (genetics) , receptor , cell , biology , medicine , biochemistry , pathology
Invasion of tumor cells is the primary cause of therapeutic failure in malignant chondrosarcomas treatment. Receptor activator of nuclear factor‐κB ligand (RANKL) and its receptor, RANK, play a key roles in osteoclastogenesis and tumor metastasis. We found that the RANKL and RANK expression in human chondrosarcoma tissues was higher than that in normal cartilage. We also found that RANKL directed the migration and increased cell surface expression of β1 integrin in human chondrosarcoma cells (JJ012 cells). Pretreatment of JJ012 cells with MAPK kinase (MEK) inhibitors, PD98059 or U0126, inhibited the RANKL‐induced migration and integrin expression. Stimulation of cells with RANKL increased the phosphorylation of MEK and extracellular signal‐regulating kinase (ERK). In addition, NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also inhibited RANKL‐induced cells migration and integrin up‐regulation. Taken together, these results suggest that the RANKL acts through MEK/ERK, which in turn activates IKKα/β and NF‐κB, resulting in the activation of β1 integrin and contributing to the migration of human chondrosarcoma cells. J. Cell. Biochem. 111: 138–147, 2010. © 2010 Wiley‐Liss, Inc.