z-logo
Premium
Biology and pathology of Rho GTPase, PI‐3 kinase‐Akt, and MAP kinase signaling pathways in chondrocytes
Author(s) -
Beier Frank,
Loeser Richard F.
Publication year - 2010
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.22604
Subject(s) - microbiology and biotechnology , signal transduction , chondrocyte , wnt signaling pathway , biology , protein kinase b , pi3k/akt/mtor pathway , extracellular matrix , kinase , mapk/erk pathway , smad , cartilage , anatomy
Chondrocytes provide the framework for the developing skeleton and regulate long‐bone growth through the activity of the growth plate. Chondrocytes in the articular cartilage, found at the ends of bones in diarthroidial joints, are responsible for maintenance of the tissue through synthesis and degradation of the extracellular matrix. The processes of growth, differentiation, cell death and matrix remodeling are regulated by a network of cell signaling pathways in response to a variety of extracellular stimuli. These stimuli consist of soluble ligands, including growth factors and cytokines, extracellular matrix proteins, and mechanical factors that act in concert to regulate chondrocyte function through a variety of canonical and non‐canonical signaling pathways. Key chondrocyte signaling pathways include, but are not limited to, the p38, JNK and ERK MAP kinases, the PI‐3 kinase‐Akt pathway, the Jak‐STAT pathway, Rho GTPases and Wnt‐β‐catenin and Smad pathways. Modulation of the activity of any of these pathways has been associated with various pathological states in cartilage. This review focuses on the Rho GTPases, the PI‐3 kinase‐Akt pathway, and some selected aspects of MAP kinase signaling. Most studies to date have examined these pathways in isolation but it is becoming clear that there is significant cross‐talk among the pathways and that the overall effects on chondrocyte function depend on the balance in activity of multiple signaling proteins. J. Cell. Biochem. 110: 573–580, 2010. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here