Premium
Analyzing cell fate control by cytokines through continuous single cell biochemistry
Author(s) -
Rieger Michael A.,
Schroeder Timm
Publication year - 2009
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.22273
Subject(s) - cytokine , cell , intracellular , microbiology and biotechnology , biology , cell signaling , signal transduction , cell fate determination , computational biology , immunology , biochemistry , transcription factor , gene
Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time‐lapse imaging and single cell tracking allowing constant long‐term observation of molecules and behavior of single cells. J. Cell. Biochem. 108: 343–352, 2009. © 2009 Wiley‐Liss, Inc.