z-logo
Premium
A novel purification method for multipotential skeletal stem cells
Author(s) -
Itoh Shousaku,
Aubin Jane E.
Publication year - 2009
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.22262
Subject(s) - stem cell , stromal cell , microbiology and biotechnology , mesenchymal stem cell , bone marrow , haematopoiesis , osteoblast , biology , progenitor cell , stem cell transplantation for articular cartilage repair , population , clinical uses of mesenchymal stem cells , adult stem cell , immunology , in vitro , cancer research , endothelial stem cell , medicine , biochemistry , environmental health
At least some cells within bone marrow stromal populations are multipotential (i.e., differentiate in vitro into osteoblasts, chondrocytes, and adipocytes) and thus designated skeletal stem cells (SSCs) or mesenchymal stem cells (MSCs) amongst other names. Recently, a subpopulation of stromal cells, notably osteoblasts or their progenitors, has been identified as a definitive regulatory component of the hematopoietic stem cell (HSC) niche. Thus, the development of methods for purifying not only SSCs but cells comprising the HSC niche is of interest. Here, we report a method for purifying a novel bone marrow‐derived population with a high frequency of osteoprogenitors and high expression levels of osteoblast differentiation markers (highly purified osteoprogenitors (HipOPs)) as well as markers of the bone niche for HSCs. In vivo transplantation experiments demonstrated that donor HipOPs differentiated into not only osteoblasts, osteocytes and cells around sinusoids but also hematopoietic cells. Thus, HipOPs represent a novel population for simultaneous reconstruction of bone and bone marrow microenvironments. J. Cell. Biochem. 108: 368–377, 2009. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here