z-logo
Premium
Stem cells in development of therapeutics for Parkinson's disease: A perspective
Author(s) -
Xi Jiajie,
Zhang SuChun
Publication year - 2008
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.21916
Subject(s) - neuroscience , stem cell , disease , progenitor cell , parkinson's disease , biology , regeneration (biology) , microbiology and biotechnology , medicine , pathology
Using Parkinson's disease as a prototype of neurodegenerative diseases, we propose applications of human stem cells in the development of therapeutics for neurodegenerative diseases. First, in vitro differentiation of human stem cells offers a versatile model for dissecting molecular interactions underlying human dopamine (DA) neuron specification, which may form a foundation for instigating regeneration of DA neurons from progenitors that reside in the brain. Second, stem cells derived from diseased cells or through genetic modification can serve as a platform for unraveling biochemical processes that lead to the cellular pathogenesis of degeneration. This may in turn serve as a template for identifying or developing therapeutics for slowing, stopping, or reversing the disease process. And finally, stem cells, particularly those induced from patients' own cells, provide a reliable source of DA neurons for cell‐based therapy. J. Cell. Biochem. 105: 1153–1160, 2008. © 2008 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom