z-logo
Premium
Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia
Author(s) -
Tyagi Neetu,
Moshal Karni S.,
Ovechkin Alexander V.,
Rodriguez Walter,
Steed Mesia,
Henderson Brooke,
Roberts Andrew M.,
Joshua Irving G.,
Tyagi Suresh C.
Publication year - 2005
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.20578
Subject(s) - hyperhomocysteinemia , oxidative stress , homocysteine , medicine , nitrotyrosine , endocrinology , chemistry , peroxynitrite , nitric oxide , nitric oxide synthase , biology , biochemistry , superoxide , enzyme
Abstract Formation of homocysteine (Hcy) is the constitutive process of gene methylation. Hcy is primarily synthesized by de‐methylation of methionine, in which s‐adenosyl‐methionine (SAM) is converted to s‐adenosyl‐homocysteine (SAH) by methyltransferase (MT). SAH is then hydrolyzed to Hcy and adenosine by SAH‐hydrolase (SAHH). The accumulation of Hcy leads to increased cellular oxidative stress in which mitochondrial thioredoxin, and peroxiredoxin are decreased and NADH oxidase activity is increased. In this process, Ca 2+ ‐dependent mitochondrial nitric oxide synthase (mtNOS) and calpain are induced which lead to cytoskeletal de‐arrangement and cellular remodeling. This process generates peroxinitrite and nitrotyrosine in contractile proteins which causes vascular dysfunction. Chronic exposure to Hcy instigates endothelial and vascular dysfunction and increases vascular resistance causing systemic hypertension. To compensate, the heart increases its load which creates adverse cardiac remodeling in which the elastin/collagen ratio is reduced, causing cardiac stiffness and diastolic heart failure in hyperhomocysteinemia. J. Cell. Biochem. © 2005 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here