z-logo
Premium
Cellular organization and appearance of differentiated structures in developing stages of the parasitic platyhelminth Echinococcus granulosus
Author(s) -
Martínez Claudio,
Paredes R.,
Stock R.P.,
Saralegui A.,
Andreu M.,
Cabezón C.,
Ehrlich R.,
Galanti N.
Publication year - 2004
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.20294
Subject(s) - biology , echinococcus granulosus , morphogenesis , foramen , metacestode , anatomy , cellular differentiation , microbiology and biotechnology , nucleus , cestoda , pathology , immunology , helminths , zoology , genetics , medicine , gene
Echinococcus granulosus is the causative agent of hydatidosis, a major zoonoses that affects humans and herbivorous domestic animals. The disease is caused by the pressure exerted on viscera by hydatid cysts that are formed upon ingestion of E. granulosus eggs excreted by canine. Protoscoleces, larval forms infective to canine, develop asynchronously and clonally from the germinal layer (GL) of hydatid cysts. In this report, we describe the cellular organization and the appearance of differentiated structures both in nascent buds and developed protoscoleces attached to the GL. Early protoscolex morphogenesis is a highly complex and dynamic process starting from the constitution of a foramen in the early bud, around which nuclei are distributed mainly at the lateral and apical regions. Similarly, distribution of nuclei in mature protoscoleces is not homogenous but underlies three cellular territories: the suckers, the rostellar pad, and the body, that surrounds the foramen. Several nuclei are associated to calcareous corpuscles (Cc), differentiated structures that are absent in the earlier bud stages. The number of nuclei is similar from the grown, elongated bud stage to the mature protoscolex attached to the GL, strongly suggesting that there is no significant cellular proliferation during final protoscolex development. The amount of DNA per nucleus is in the same range to the one described for most other platyhelminthes. Our results point to a sequential series of events involving cell proliferation, spatial cell organization, and differentiation, starting in early buds at the GL of fertile hydatid cysts leading to mature protoscoleces infective to canine. © 2004 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here