z-logo
Premium
Active poly(ADPribose) metabolism in DNAase‐ and salt‐resistant rat testis chromatin with high transcriptional activity/competence
Author(s) -
Mennella Maria Rosaria Faraone,
Roma Guglielmo,
Farina Benedetta
Publication year - 2003
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.10552
Subject(s) - chromatin , nuclear matrix , dna , polymerase , nuclease , rna , biochemistry , microbiology and biotechnology , histone , biology , chemistry , gene
A chromatin fraction, named pP fraction, was prepared from rat testis nuclei, which had been digested with nuclease in order to separate soluble and insoluble chromatin. This fraction resembled nuclear matrix as it was highly resistant to DNAase digestion, had a high content of proteins compared to the low DNA percentage, and a noticeable transcriptional activity. Moreover, poly(ADPribosyl)ation system (i.e., poly(ADPR)polymerase, poly(ADPribose), and acceptor proteins) was still present at high levels. In order to study whether it might be identified as the protein support surrounding chromatin loops, this pP fraction was further analyzed after 3 M NaCl extraction. The 3 M NaCl extract and the highly insoluble pellet, named Nuclear Matrix Pellet, were characterized as it regards DNA, newly synthesized RNA and proteins. Furthermore, poly(ADPribose) metabolism was analyzed by measuring both poly(ADPribose) polymerase and poly(ADPribose) glycohydrolase activities, poly(ADPribose) distribution and by identifying protein acceptors. The final pellet had features of nuclear matrix containing less than 10% DNA and high percentage of proteins; 28% of newly synthesized RNA was still associated with this fraction. Long and branched polyADPribose were found in the nuclear matrix‐like pellet, although ADPribose acceptors (mainly H1 and core histones) appeared to be modified mostly with short ADPribose oligomers. Longest and branched polymers were retained on the top of protein gel, likely bound to automodified poly(ADPribose) polymerase. J. Cell. Biochem. 89: 688–697, 2003. © 2003 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here