Premium
Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin
Author(s) -
Kalajzic I.,
Kalajzic Z.,
Hurley M.M.,
Lichtler A.C.,
Rowe David W.
Publication year - 2003
Publication title -
journal of cellular biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.028
H-Index - 165
eISSN - 1097-4644
pISSN - 0730-2312
DOI - 10.1002/jcb.10459
Subject(s) - noggin , osteoblast , osteocalcin , alkaline phosphatase , microbiology and biotechnology , bone morphogenetic protein 2 , fibroblast growth factor , cellular differentiation , chemistry , bone morphogenetic protein , endocrinology , medicine , biology , biochemistry , receptor , in vitro , gene , enzyme
Abstract Fibroblast growth factor 2 (FGF2) and noggin are two unrelated ligands of two distinctly different signaling pathways that have a similar inhibitory effect on osteoblast differentiation. Because of their differences, we postulated that they probably acted at a different stage within the osteoprogenitor differentiation pathway. This study was performed on primary murine bone cell cultures under conditions where alkaline phosphatase (AP) and type I collagen expression (Col1a1) were observed by day 7 (preosteoblast stage), followed by bone syaloprotein (BSP) at day 11 (early osteoblast) and osteocalcin (OC) by day 15–18 (mature osteoblast stage). FGF2 completely inhibited expression of AP and the mRNA transcript for Col1a1, while noggin showed only a partial inhibition of these markers of preosteoblast differentiation. However, the markers of differentiated osteoblasts (BSP and OC) were completely inhibited in both the FGF2 and noggin treated cultures, suggesting that noggin acts at later point in the osteoprogenitor differentiation pathway than FGF2. To further verify that the inhibition was occurring at a different stage of osteoblasts development, primary cultures derived from transgenic mice harboring segments of the collagen promoter driving green fluorescent protein (GFP) that activate at different levels of osteoblast differentiation were analyzed. Consistent with the endogenous markers, pOBCol3.6GFP and pOBCOL2.3GFP transgene activity was completely inhibited by continuous addition of FGF2, while noggin showed partial inhibition of pOBCol3.6GFP and complete inhibition of the pOBCol2.3GFP transgene. Upon removal of either agent, endogenous and GFP markers of osteoblast differentiation reappeared although at a different temporal pattern. This work demonstrates that FGF2 and noggin can reversibly modulate osteoblast lineage differentiation at different maturational stages. These agents may be useful to enrich for and maintain a population of osteoprogenitor cells at a defined stage of differentiation. J. Cell. Biochem. 88: 1168–1176, 2003. © 2003 Wiley‐Liss, Inc.