z-logo
Premium
MiR‐16, as a potential NF‐κB‐related miRNA, exerts anti‐inflammatory effects on LPS‐induced myocarditis via mediating CD40 expression: A preliminary study
Author(s) -
Li QiangQiang,
Xi Jing,
Li BingQiang,
Li Ning
Publication year - 2020
Publication title -
journal of biochemical and molecular toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.526
H-Index - 58
eISSN - 1099-0461
pISSN - 1095-6670
DOI - 10.1002/jbt.22426
Subject(s) - downregulation and upregulation , lipopolysaccharide , microrna , cd40 , myocarditis , apoptosis , chemistry , nf κb , luciferase , reporter gene , microbiology and biotechnology , messenger rna , gene expression , cancer research , transfection , immunology , biology , gene , medicine , in vitro , biochemistry , cytotoxic t cell
The purpose of this study was to investigate the biological effect of miR‐16 on myocarditis and the underlying molecular mechanism. H9c2 cells were treated with 10 µg/mL lipopolysaccharide (LPS) for 12 hours to form a myocarditis injury model. We observed that LPS treatment distinctly decreased the level of miR‐16 in H9c2 cells. Upregulation of miR‐16 increased cell proliferation and reduced cell apoptosis. Then, CD40 was predicted and verified as a target gene of miR‐16 by TargetScan and luciferase reporter assay, respectively. Furthermore, the messenger RNA and protein expression of CD40 are negatively regulated by miR‐16. The relative expression of inflammatory factors was dramatically decreased by the miR‐16 mimic. Cells cotransfected with miR‐16 mimic and si‐CD40 could significantly abolish the injury of cardiomyocytes caused by myocarditis. Our study illustrated that the upregulation of miR‐16 has a protective effect on LPS‐damaged H9c2 cells, which may be achieved by regulating CD40 and the nuclear factor kappa B pathway.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here