Premium
Forskolin ameliorates mancozeb‐induced testicular and epididymal toxicity in Wistar rats by reducing oxidative toxicity and by stimulating steroidogenesis
Author(s) -
Girish B.P.,
Reddy P. Sreenivasula
Publication year - 2018
Publication title -
journal of biochemical and molecular toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.526
H-Index - 58
eISSN - 1099-0461
pISSN - 1095-6670
DOI - 10.1002/jbt.22026
Subject(s) - mancozeb , toxicity , reproductive toxicity , endocrinology , epididymis , spermatogenesis , lipid peroxidation , medicine , sperm , superoxide dismutase , forskolin , catalase , oxidative stress , lactate dehydrogenase , biology , chemistry , biochemistry , enzyme , botany , stimulation , fungicide
In the present study, we have tested the beneficial effects of forskolin in protecting the mancozeb‐induced reproductive toxicity in rats. Adult male Wistar rats were exposed to either mancozeb (500 mg/kg body weight/day) or forskolin (5 mg/kg body weight/day) or both for 65 days and analyzed for spermatogenesis and steroidogenesis and testicular and epididymal oxidative toxicity. A significant decrease in daily sperm production, epididymal sperm count, motile, viable, and hypo‐osmotic swelling‐tail swelled sperm was observed in mancozeb‐treated rats. The activity levels of testicular 3β‐hydroxysteroid dehydrogenase and 17β‐hydroxysteroid dehydrogenase and circulatory testosterone levels were significantly decreased in mancozeb‐treated rats. Exposure to mancozeb resulted in a significant decrease in glutathione levels and superoxide dismutase and catalase activity levels with an increase in lipid peroxidation levels in the testes and epididymis. Coadministration of forskolin mitigated the mancozeb‐induced oxidative toxicity and suppressed steroidogenesis and spermatogenesis.