z-logo
Premium
The evaluation of acute toxicity, antimicrobial activity of 1‐phenyl‐5‐p‐tolyl‐1H‐1, 2, 3‐triazole, and binding to human serum albumin
Author(s) -
Duan HongYe,
Li JianLing,
Wu LuYong,
Shu HuoMing,
Chen YuXue,
Ding GuoHua,
Dong RunCong,
Si HongZong,
Zhong Xia,
He WenYing
Publication year - 2017
Publication title -
journal of biochemical and molecular toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.526
H-Index - 58
eISSN - 1099-0461
pISSN - 1095-6670
DOI - 10.1002/jbt.21959
Subject(s) - human serum albumin , chemistry , fluorescence , antimicrobial , triazole , serum albumin , toxicity , biochemistry , nuclear chemistry , stereochemistry , organic chemistry , physics , quantum mechanics
1‐Phenyl‐5‐p‐tolyl‐1H‐1, 2, 3‐triazole (PPTA) was a synthesized compound. The result of acute toxicities to mice of PPTA by intragastric administration indicated that PPTA did not produce any significant acute toxic effect on Kunming strain mice. It exhibited the various potent inhibitory activities against two kinds of bananas pathogenic bacteria, black sigatoka and freckle, when compared with that of control drugs and the inhibitory rates were up to 64.14% and 43.46%, respectively, with the same concentration of 7.06 mM. The interaction of PPTA with human serum albumin (HSA) was studied using fluorescence polarization, absorption spectra, 3D fluorescence, and synchronous spectra in combination with quantum chemistry and molecular modeling. Multiple modes of interaction between PPTA and HSA were suggested to stabilize the PPTA–HSA complex, based on thermodynamic data and molecular modeling. Binding of PPTA to HSA induced perturbation in the microenvironment around HSA as well as secondary structural changes in the protein.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here