Premium
Fluoride effects on bone crystals
Author(s) -
Grynpas Marc D.
Publication year - 1990
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1002/jbmr.5650051362
Subject(s) - fluoride , apatite , bone mineral , crystallinity , dissolution , chemistry , solubility , bone resorption , bone cell , trabecular bone , mineralogy , dentistry , inorganic chemistry , osteoporosis , endocrinology , crystallography , organic chemistry , medicine
Fluoride is known to have biological effects on bone cells as well as physicochemical effects on bone crystals. This review concentrates on the latter. Fluoride increases the stability of the apatite lattice and decreases the solubility of the apatite crystals. In bone mineral, this ion has been shown to affect bone crystal structure by increasing crystallinity and reducing specific surface area. These changes in turn lead to changes in the chemistry of bone mineral. Bone mineral deposition is delayed by fluoride. This ion does not diffuse into bone already formed, but is incorporated during mineralization. Subsequently fluoride tends to accumulate in the most highly mineralized bone. Bone treated with fluoride has been shown to be more resistant to acid dissolution than normal bone, which would explain the reduced rate of resorption of fluoridated bone. The distribution of fluoride in bone is not uniform, but its net effect is to increase bone mineral density probably by an increased packing of bone crystals. Finally, there is a debate as to whether fluoride produces a bone of different quality. Whether these changes in the quality of bone will prove to be helpful or harmful remain to be determined.